Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.
نویسندگان
چکیده
Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.
منابع مشابه
Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit remarkable electronic and optical properties. The 2D features, sizable bandgaps and recent advances in the synthesis, characterization and device fabrication of the representative MoS2, WS2, WSe2 and MoSe2 TMDs make TMDs very attractive in nanoelectronics and optoelectronics. Similar to graphite and graphene, the atom...
متن کاملObservation of low energy Raman modes in twisted bilayer graphene.
Two new Raman modes below 100 cm(-1) are observed in twisted bilayer graphene grown by chemical vapor deposition. The two modes are observed in a small range of twisting angle at which the intensity of the G Raman peak is strongly enhanced, indicating that these low energy modes and the G Raman mode share the same resonance enhancement mechanism, as a function of twisting angle. The ~94 cm(-1) ...
متن کاملLow-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.
van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectr...
متن کاملEnhanced ultra-low-frequency interlayer shear modes in folded graphene layers.
Few-layer graphene has attracted tremendous attention owing to its exceptional electronic properties inherited from single-layer graphene and new features led by introducing extra freedoms such as interlayer stacking sequences or rotations. Effectively probing interlayer shear modes are critical for unravelling mechanical and electrical properties of few-layer graphene and further developing it...
متن کاملOptical phonons in twisted bilayer graphene with gate-induced asymmetric doping.
Twisted bilayer graphene (tBLG) devices with ion gel gate dielectrics are studied using Raman spectroscopy in the twist angle regime where a resonantly enhanced G band can be observed. We observe prominent splitting and intensity quenching on the G Raman band when the carrier density is tuned away from charge neutrality. This G peak splitting is attributed to asymmetric charge doping in the two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2015